K-theory of locally compact modules over orders

نویسندگان

چکیده

We present a quick approach to computing the K-theory of category locally compact modules over any order in semisimple ℚ-algebra. obtain by first quotienting out and subsequently vector modules. Our proof exploits fact that pair (vector plus modules, discrete modules) becomes torsion theory after we quotient finite Treating these quotients as exact categories is possible due recent localization formalism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract structure of partial function $*$-algebras over semi-direct product of locally compact groups

This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism.  Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-c...

متن کامل

Multipliers of locally compact quantum groups via Hilbert C*-modules

A result of Gilbert shows that every completely bounded multiplier f of the Fourier algebra A(G) arises from a pair of bounded continuous maps α, β : G → K, where K is a Hilbert space, and f(s−1t) = (β(t)|α(s)) for all s, t ∈ G. We recast this in terms of adjointable operators acting between certain Hilbert C∗-modules, and show that an analogous construction works for completely bounded left mu...

متن کامل

Uniform continuity over locally compact quantum groups

We define, for a locally compact quantum group G in the sense of Kustermans– Vaes, the space of LUC (G) of left uniformly continuous elements in L∞(G). This definition covers both the usual left uniformly continuous functions on a locally compact group and Granirer’s uniformly continuous functionals on the Fourier algebra. We show that LUC (G) is an operator system containing the C∗-algebra C0(...

متن کامل

Computing Generators of Free Modules over Orders in Group Algebras

Let E be a number field and G be a finite group. Let A be any OE-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] ∼= ⊕χMχ is explicitly computable and each Mχ is in fact a matrix ring over a field, this leads to an algorithm that eithe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2021

ISSN: ['1565-8511', '0021-2172']

DOI: https://doi.org/10.1007/s11856-021-2247-5